• winogradsky=
    group member(garima upadhyay, anjali bora, bhumika, Gaurav)
    group name= Aris totel.
    @Darshana @ravi312

  • what is winogradsky?
    The Winogradsky column is a simple device for culturing a large diversity of microorganisms.

  • who invented winogradsky?
    1880s Sergei Winogradsky.

  • what type of device is winogradsky?
    The device is a column of pond mud and water mixed with a carbon source such as newspaper (containing cellulose), blackened marshmallows or egg-shells (containing calcium carbonate), and a sulfur source such as gypsum (calcium sulfate) or egg yolk.
    The column provides numerous gradients, depending on additive nutrients, from which the variety of aforementioned organisms can grow. The aerobic water phase and anaerobic mud or soil phase are one such distinction.

  • How to make a Winogradsky column?

The column is a rough mixture of ingredients.

  • A tall glass or plastic tube (30 cm long, >5 cm wide) is filled one-third full of pond mud, omitting any sticks, debris, and air bubbles.

  • Supplementation of -0.25% w/w calcium carbonate and -0.50% w/w calcium sulfate or sodium sulfate is required (ground eggshell and egg yolk respectively are rich in these minerals), mixed in with some shredded newspaper or hay (for cellulose).

  • An additional anaerobic layer, this time of unsupplemented mud, brings the container to two thirds full.

  • This is followed by water from the pond to saturate the mud and occupy half the remaining volume.

  • The column is sealed tightly to prevent evaporation of water and incubated for several months in strong natural light.

  • Colonies seen in Winogradsky column
    After the column is sealed tightly,

  • The anaerobic bacteria will develop first, including Clostridium spp. These anaerobic bacteria will consume the cellulose as an energy source. Once this commences they create CO2 that is used by other bacteria and thus the cycle begins.

  • Eventually, color layers of different bacteria will appear in the column.

  • At the bottom of the column will be green sulfur photosynthetic anaerobic bacteria.

  • The layer above will be purple which is sulfur anaerobic bacteria.

  • Followed by another column of purple anaerobic non-sulfur bacteria.

  • And at the top will be a layer of Cyanobacteria which is sulfur-oxidizing bacteria. This top layer of aerobic bacteria produces CO2, which feeds back into the column creating a further reaction.

    Importance of Winogradsky column
    One can discover a number of interesting things in the columns.

  • Winogradsky columns are model microbial ecosystems.

  • The microbes create two gradients, one of oxygen, the second of hydrogen sulfide. The oxygen is highest at the top and lowest at the bottom, the hydrogen sulfide gas is highest at the bottom and lowest at the top.

  • When grown in the light, one can find different bacteria having different pigments growing in many different layers, giving the different layers different colors.

(i) Green photosynthetic bacteria and algae are on top,

(ii) Upper decomposers (using aerobic respiration) follow,

(iii) There is usually both a red and a rust colored layer of mud including photosynthetic bacteria that do not produce oxygen. (Except at the top, the photosynthetic bacteria are only under the glass or plastic, not deep inside the mud).

(iv) Lower decomposers (using anaerobic respiration) and chemosynthetic bacteria using sulfur are in the lowest layers.

  • When grown in the dark, the column is much more uniform, having only about 2 layers.

(i) The number of bacteria species in the ecosystem is also reduced, there are mainly upper decomposers using aerobic respiration and lower decomposers using anaerobic respiration, and lower chemosynthetic organisms using sulfur.

  • Winogradsky columns are important because they show us a microbial ecosystem and how they can change under different conditions, such as the presence of light. Microbial ecosystems are important because we are a walking microbial ecosystem.

Hi, please share the photos and images of the column here.!